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By A. Busemann
INTRODUCTTION

Centrifugal pumps and turbines may sometimes be treated by using
plane incompressible flow where the fluid springs from a source or runs
into a sink in the center of the impeller. However, application of
conformel” mapping is not so simple for this type of flow as for recti-
linear flow, because a steady flow about the blade sections exists only
in a coordinste system rotating with the hlade. TIn a coordinate’
system at rest, the velocity field outside of the singularities is free
from sources and rotation, but the impeller rotates in it. By applying
appropriate distributions of sources, sinks, and vortices inside the
blade contour, a flow car be found which does not pass through the
rotating blade contour. The action of the flow on these singularities
inside the blades creates the torque.

For blowers with high circumferential veloclties, the same consider-
ations would have to be extended by the requirements of a compressible
flow. Though there exist corresponding laws of forces on sources, sinks,
and vortices, the conditions become considerably more involved because
the freedom from vortices in the regular domain of the flow concerns the
velocity field whereas freedom from sources exists only in steady flow and
involves the stream-density field (the product of velocity and gas density).
It becomes impossible to superimpose two fields free from sources and
vortices into a new field which 1s free from sources and vortices;
furthermore, in a compressible flow one can operate with distributed
singulerities only, since a certain region around point sources and point
vortices is vold of any velocity field. TFor these reasons, the laws of
forces on singularities have only a very limited range of application in

gas dynamics.

It is known that the velocity fields of incompressible flow and
magnetic fields are similar with respect to the distribution of the
vector and to the field energy. Accordingly, one should anticipate the
forces on corresponding singularities to be equal so that a dlsplacement
of the singularities produces the amount of work required for the change
in field energy connected with it. Contrary to this expectation the

*"Zur Gasdynamik des drehenden Schaufelsterns." Zeitschrift fur
angewandte Mathematlk und Mechanik, vol. 18, issue 1, Feb. 1938, pp. 31-38,
dedicated to the memory of the late editor Erich Trefftz.
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hydrodynamic and the magnetic forces are always opposite in sign. The
result is that, on the one hand, the forces on magnetic sources and sinks
{north and south poles) and those on hydrodynamic vortices are such that
their displacement work balances the field energy. On the other hand,

for the displacement of hydrodynamic sources and sinks and of magnetic
vortices (around conductors of electric currents), the opposite sign of
the displacement work would be required to balance the field energy.

The difference is restored for the magnetic vortex according to Faraday's
induction law by the well-known fact that the electric current flowing
in' the conductor 1s opposed, during any displacement, by induced elec~-
tromotive forces, the overcoming of which requires a supply of electrical
energy. Likewise, additicnsl energy must be supplied during displace-_
ments of the hydrodynamic sources and sinks; in this case the energy
supply is caused by higher pressures at the location of the sources and
lower pressures at the location of the sinks compared to the pressures
of the steady flow. These pressure differences are precisely what
constitutes the pressure heads or pressure differentials for rotating
machinery.

For plane flow, one may regerd instead of the field of the stream-
lines the fileld of the potential lines which are orthogonal to the
streamlines. In the case of incompressible flow, this fleld is in the
regular domain free from sources and vortices; however, sources and
vortices are interchanged, since a streamline source represents a
potentlal-line vortex and vice versa. ' Comparing plane potentisl lines
with the plane field of magnetic lines of force, one finds now perfect
agreement including the sign of the forces and the induction law. If
one wants to determine the edditional pressure difference between two
points of the field which alters Bernoulli's pressure difference of the
steady flow, one must draw & line comneéting these points and observe
on it the varistion with time in the number of the potential lines which
intersect this connecting line. The comnecting line must not pass over
source points of the potential lines. This is the same rule which
applies for the determination of induced electromotive forces. In order
to ascertain whether the connecting line has moved over a source, these
sources cannot be allowed to appear and disappear. For magnetic sources,
this prerequisite is obviously satisfied by the fact that a north pole
can be created only by separating a north and a south pole of equal
strength. The sources of the potential lines represent vortices of the
gtreamlines and it follows from Helmholtz' vortex theorems that, in two-
dimensional flow, a vortex rotating clockwise can be produced only by
separating a vortex rotating clockwise from snother one rotating counter-
clockwise. For these plane fields, the similarity is therefore very far
reaching. For magnetic and hydrodynemic' fields in space, the similarity
ie subject to limitatlons because lines of forces remain lines in space
whereas the potential lines change to potential surfaces lnsofar as
unigue surfaces orthogonal to the stresmlines exist. Generally, one is
therefore limited to correlate only the ‘hydrodynamic velocity fleld and
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the magnetic force field. If one ldentifies veloecity and magnetic-field
intensity, then the source matches the magnetic pole and the hydrodynamic
vortex matches the wire through which current flows; with respect to the
induction law, however, it is Just the wire with electric current and the
hydrodynamic source which can be compared.

Whereas the laws about forces on sources, sinks, and vortices almost
maintain their form in transfer from hydrodynamics to gas dynamics but
lose their major field of application, the hydrodynamicel inductlon law
must correspond to a similarly formulated gas-dynamical induction law
and at the same time maintein to some extent its applicabllity, since
it deals only with the pressure difference of unsteady flow as compared
to steady flow. It is just this pressure difference which is related to
the pressure rise in blowers. Thus, the author will give below the
general derivation of the gas-dynamical induction law as he presented it
for the first time in the sumer of 1936 in a colloguium on gas dynsmics
at the DVL under the chairmsnship of E. Trefftz. In & second part, he
will show that the torque at the impeller in nonviscous compressible
flow, even for circumferential velocities below sonic velocity, does not
result from the effective pressure rise alone as in nonviscous incom-
pressible flow, but that, on the contrary, even without effective pressure
rise, energy quantities may be radiated from the rotating impeller.

I. THE PRESSURE RISE OF A CENTRIFUGAL BLOWER

1. Derivation of the Gas-Dynamical Induction Law

In the revision of the section "Hydrodynamics" for the 8th edition
of A. Féppl, "Vorlesungen iber technische Mechanik" (Lectures on technical
mechanics), volume IV, page 417, I derived the "hydrodynsmical induction
law." If one limits the application to & loss-free gas flow of constant
entropy, the derivation may be transferred directly to gases.

For a nonviscous gas, free from gravity, of pressure p, density p,
and velocity W with the components u, v, W in the directions of
the spatial coordinates x, ¥y, 2z, one obtalns, in dependence on the
time t, the following equatlions of motion:

op du dp dV op aw
- — = — - m = - m—— = —_— 1
x @ dy at’ 32 P& (1)

For constant entropy s there applies for the enthalpy 1 of the gas:

di=%9- (2)
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By substitution of this relationship Into equation (1) there result the
following equations:

_él—,:Q-B —g—;’-"-—"g'x _él:_d_"l (5)
dt

For a certain time t = t, one can combine these three partial deriva-
tives into the following total differential of the enthalpy in space:

du dv - dw
Gl = =— dx + =~ + ~— 4z )4-
dt dat dy at ( )

If one introduces the convention that the components dx, dy, dz of a
line element in space (which are used in equation (&) only for the
time +t = t,) shall be for all times, the components of & line element

attached to the gas which connects the adjacent points G; and Go
moved with the gas, the following transformaetion of eguation (%) nholds:

-di = é% (udx+vdy+wdz) -udu-vdv - v aw (5)

since in this case the interchange of the differentiation
é% (ax) = d<%f)= du, ete., is valid. If one places the points G and Go

attached to the gas farther apart, one may integrate the differentials
indicated in equation (5) along a line from Gy to Go moved with the

gas, so that the following difference in enthalpy is then obtained:

a| % 1/, 2 2 2
1, -1, = T o (wdx + v dy + w dz)| + 5 (ul + VS Wy ) -
% (u22 + V22 + V22) (6)

If one introduces, instead of the points G; and Gp attached to the
gas, the points fixed in’'space P; and P2, which at the time t = to

coinclde with the former, one can prolong the.line between Gy and Gp
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with those gas points sweeping over the points P; and P, after the
time % = to (fig. 1). The integration along this line, which is like-

wise attached to the gas (and is therefore determined in the development
with time) but connects the fixed points P; &and Pp, includes beyond

the integral required in equation (6) contributions which result from the
shift of the integration limits and have the value W2 - Wo2 dt. If
one subtracts the latter, one obtaine the following relation:

P
2
1, - i, Ed-E/‘ (udx + v dy + w dz) -%(ul2+v12+w1_2)+
P
1

% (1,2 + V2 + Wp2)

or
is + 12- (u22 + Vo2 + Wp2) -EL1+ % (112 + w2 + w'2z[ =
Pa
- (udx + v dy + w dz) (7
at Jp,

The right side of the equation represents the induced pressure rise which
1ls generated between .the polnts P; and P2' Note that one deals here

not with a partial differentiation with respect to time but with a total
differentiation along a line moved with the gas. The selectlon of the

line at the time 'ty 1s arbitrary. If this line, once selected, is not
moved exactly with the gas, there originates an error which is proportional
to the vortices located between the line moved exactly with the gas and the
wrong connecting line.

2. Applicatlions of the Induction Law

In a steady gas flow free from vortices, the right side of equation (7)
diseppears because in the first place the integral, due to the freedom
from vorticity, is independent of the path and equals the potential differ-
ence ®5 - ®; and in the second place, this potential difference, due to

the steady state, is independent of the time.
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For a steasdy gas flow with vortices, the right side of equation (7)
disappears only for points P; and Po which lie on the same stream-

line. If one draws the connecting line from P; +to Po along this
streamline, all 1ts points remain on this streamline later on, too. The
entire integration path varies with time only in that 1t extends beyond
the downstream point Po 1in a flat loop which mekes, however, no contri-
bution to the integral. The value of the integral on the remaining piece
from P; to Py is agaln independent of the time so that the right side
of equation (7) disappears. The vanishing right side of equation (7}
establishes on the left side the validity of the Bernoulli equation for
the gas flow.

For a flow which is free from vortices but variable with time, the
value of the integral is at every instant, independently of the path,
equal to the potential difference @5 - ®;. However, since the velocity-

distribution varles with time, the potential difference also becomes .
dependent on the time, and one obtains the well-known relatlonship:

ip + % (ue?' + v22 + w'22) -ﬁl + %6112 + vlg + wla)] = - %@’2 - tbl)

i+£6,12+v2+w2) + 2 _ constant (8)
2 dt

This is the generalized Bernoulli equation for the unsteady gas flow
free from vortices.

A further application of the induction law is possible for nonsteady
gas flows which vary periodically with time. In this case, 1t is easier
to determlne, instead of the.pressure rise at every instant, the mean
value of the pressure rise for the period of the duration T. If one
integrates the right side of equation (7) with respect to t over the
period and then divides by the duration of this period, one obtains the
time average: .

~

Pn . P
h=.é_ f (w dx + v &y + w dz) +f (wax + vay + v dz)
Pl to P2 tO+T
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Since the veloclty field is the same at the times t, and t,5 + T, the

mean pressure rise indicated above represents the eirculstion in one
instantaneous field on a closed line from P; via P back to Py

divided by the time T.

Figure 2 shows how to spply this rule to the periodic flow in a
rotor. One recognizes that the circulation required by equation (9)
matches exactly the clrculation I around the blade. In the case of
m blades and an angular veloclty of the impeller , the period is glven

by T = gﬂ; accordingly, the pressure rise of the rotor amounts to:
me

_ mo
- D (92)

h =

HIH

Thus, the significance of the circulation around the blades of the
impeller with respect to the pressure rise is established for all gas
flows without increase in entropy. However, it remains to be investi-
gated whether also the torque and therewith the power consumption
depends in the same manner on the blade circulastion.

II. TORQUE OF THE IMPELLER WITHOUT MASS FLOW

The torque of the impeller in plane flow may be determined from the
difference of the moments of momentum over a control circle outside the
impeller and one ingide the impeller. If one forms in polar coordinstes

the velocity components in the direction of the radius w,. &and of the

circumference w,, with w, counted positive in the direction of the

increasing angle ¥, there results on the arc element r &y of a circle
of the radius r +the mass flow pw,r QY. The momentum of this quantity

in circumferential direction is obtained by multiplicstion by wy, the
moment of momentum by multiplication by rw,. By integration of the

moment of momentum over the entire circumference one obtains s torque

2%
D= r° v Ay (10)
0

If the entering fluld In the interior of the impeller is supplied
without rotation, a sufficiently small raedius may exist on which circum-
ferentlal components of the velocity do not yet appear. In this case,
the integral over the external circle according to equation (10) already
yields the torque of the impeller. For incompressible flow with
p = const., the velocity components W, &and wy do not correlate in
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the absence of obstacles outside of the impeller, so that for the integra-
tion over w, the mean value of w, may be teken out from under the

integrel sign. The mean value of Wy multiplied by the density p and

the circumference of the circle 2rx, however, is simply the mass G dis-
charged per second through the impeller. Therefore, in the case of incom-
pressible flow, the torque may be split into the following factors:

21t
p=& wr & = anl = EE (11)
2n Jo 25 ®

Here m 1s the number of blades, and I' the circulation sround each
of the m blades; the latter transformation results from equation (9a).
Thus, for an incompressible flow a discharge as well as & circulation
around the blades is necessary when a torque is to occur.

Since, according to the results of the previous, section, the pres-
sure rise also depends directly on the blade circulation for compressible
flow, there would also be a certain Justification for assuming that in
the case of compressible flow no correlation between discharge and blade
circulation enters equation (10). However, one single example where a
torque occurs without discharge or without blade circulation will be
gufficient for declding this question in the negative sense. In the
cagse of the example selected, there appears neither a discharge nor a
blade circulation, and yet one obtains at higher velocities a torque
different from- zero.

In order to represent the flow for the case of vanishing discharge
and venishing blade circulation at a large distance_from the impeller,
one can replace the impeller by s rotating wavy cylinder. The simplest
wavy cylinder has a cross section in which on the cilrcumference of a
circle of the radius R, m sinusoidal waves with the wave amplitude A
are superimposed (fig. 3 for the case m = 3). In case one wants to
represent the effect of an impeller with n blades more accurately, one
could still add further waves with the amplitudes Ay, A5, etc., and

the numbers 2m, 32m, ete. If the smplitude A, for the seke of further
simplification of the celculation, is limited to small values compared
to the radius R or, more specifically, compared toc the wave -

length L = 231
m

, one can neglect in equation (8) the square of the gas

veloecity compared to the other summands. Considering constant entropy
according to equation (2) one then obtains

+ 2. ®, B constant (12)
ot p ot :
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From the potential &(r,¥) the veloclty components are obtained
in the following manner:

0 . = &

_ 120
r = or Y N

(13)

Expressed by these components the continulty equation of the unsteady
gae flow reads: :

%, 0 Blow) , u) 2, o, 12, 10,
at+r|:ar "au,] B‘b+p[ar2+rar+r23¢2] °

From equstions (12) and (14) there results the well-kmown equation of
sound propagation:

Ao =20, 130, 1 P _ 1 P2 (15)
32 T Or  r232 a2 32

in wvhich a 1is the sonic velocity of the gas according to the following
relationship:

dp '
2 = . .
a (16)

Since, for small velocities, the pressure and the density deviate only
little from the values of the gas at rest Do and py; & mey be
regarded as constant and equal to the value of the sonic velocity for
this state. By integration of the pressure at constant density, there
results from equation (12) the pressure

‘P =D, - pc,% (17)

The impenetrability of the surface of the wavy cylinder furnishes the
boundary condition for the differential equation (15). At the time + =0
the cylindgr has the following radii r depending on the central angle V:

r=R - A sin my (18)
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Due to the rotation at the angular velocity o (fig. 5), one obtains
the dependency of the cylinder radii on ¥ and %

2(¥,5) = R - A sin m(y - ot) o)

Hence, the spinning wevy cylinder produces a radial pumping motion with
the veloeclty

W, = %f Ame cos n(y - wt)

Because of the smallness of the amplitude A, it is suffieclent to pre-.
scribe this value for the radlal component of the gas velocity. According
to equation (13), there results the boundary condition for ¢:

w = [22 = Amw cos m(y - est) (20)
r dr PR _ . :

Slince the integration proper of the differentiel equation for the
propagation of sound is known and we are here concerned only with the
gpplication to the impeller, the detalled calculation and the determina-
tlon of the integration constants may be omitted after stating that the
elimination of the constants was performed in such a manner that in the
asymptotic development of the solution for large radil only outgoing
waves (no incoming waves) were retained. The solution which thereby
became unique may be written in terms of the Bessel functions of the
first and second kind Jp and Y, and reads

Y(m—:—r) cos (my - mwt + &) + Jm(m-iﬁ) sin (my - mot + )

] [

i
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The phase angle & in equation (21), though in itself unessential,
has the value :

maR

' ()

5 = ——m ™~

%' ()

tan (22)

If one substitutes this solution into the equation (10) for_ the torque,
its integration can be achieved with the aid of the formulat:

2
Jm(x)Ym'(x) - zm(x)Jb'(x) = —
nx
One obtains thus the torgue
2,2
EpOma A
D= _ (23)

)] )

The power consumption E = Dw corresponds to the radiated sound output.

In order to represent the results in dimensionless form, we shall
use ag the Mach number M of the gas flow the ratio of the circumferen-
tlal veloecity u and the sonic veloeity a:

a a ’ .

A coefficient for the resistance to the motion ¢ equal to the
torque D divided by the dynamic pressure ¢ = %pou?, the generating
surface of the cylinder F = 2Ry, and the radius R 1is introduced:

cy = —2— (25)

lCompare Frank-Mises: Differentiaslgleichungen der Physik (Differ-
ential equations in physies), 1930, vol. 1, p. 4lh.
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and a second coefficient is formed for the radiated energy c¢e equal

to the radiated énergy E = Dw divided by q, F, aid the sonle
velocity & ’ ' ' '

E
Ce = T = &M (26)
Epcu a2Rat

In this form the results of the calculation are plotted in figures k4
and 5 with the Mach number used as the abscissa and the coefficlents cy

or c, wused as. the ordinste. The values m indicated at the individual

curves signify the number of waves on the clrcumference of the circle.

The ordinste has as its unit a value which is formed from the amplitude A
and the wave length L, or the amplitude A, the number of waves m, and
the redius R.

One recognizes from the flgures that the torque and likewise the
radiated energy disappears only for incompressible fldw and for gas flow
with very small velocities. In the subsonic domain there results for
growing m an ever increasing region in which no noteworthy torques
occur. The maximum of ¢, always lies at the Mach number 1.

It is interesting to compare the rotating wavy cylinder in a resting
gas and the resting wavy cylinder with a circulastory flow treated by
G. J. Taylor2. While it was found there that even at veloclties higher
than sonlc velocity damped perturbation waves occur, the above calcula-
tion, inversgely, ylelds the resulit that even below sunic veloclty the
disturbance extends to infinity. Both cases agree at m = «» (that is,
for a cylinder radius large compared to the wave length) with the solu-
tion for a flat plate with sinusoldal waves treated before by J. Ackeret3.

SUMMARY

It is shown by the example of the plane impeller that in a gas
flow with constant entropy as in an incompressible flow, the pressure
head of a rotating impeller depends only on the circulation around the
blades. In contrast to incompressible flow, however, one obtalins for
the impeller rotating freely in an infinite gas mass a larger torque
than would be necessary for production of the pressure rise because,
due to the periodic disturbance caused by the roteting impeller, sound

20, Ly, Taylor: zAMM 10, 1930, p. 33k.

53. Ackeret: Helvetia Phys. Acta 1, 301, 1928.
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waves of finite energy travel away to infinity. This energy produces &
resistance which grows with a high initial power of the circumferential
velocities and, when sonic velocity is exceeded, gradually becomes the

wave resistance of bodies moved rectilinea.rly3 at supersonic velocity.

Translated by Mary L. Mahler
Nationsl Advisory Committee -
for Aeronsutics

5See footnote 3 on p. 12.
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Figure 1.- Moving path of integration.

Figure 2.- Rotating impeller.
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Figure 3.-
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Cross section of the eylinder corrugated by m = 3 waves.
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Figure 9.” BEnergy radiation for rotation of the wavy cylinder.
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